Heraeus

Condura®.Extra Metal Ceramic Substrates Condura.extra DPIS⁽¹⁾

ZTA DCB facts

- ZTA ceramic Al₂O₃ (9 14%) Thicknesses⁽²⁾: 0.25mm/0.32 mm
- Direct Copper Bonding Cu-OFE Thicknesses⁽²⁾: 0.2 mm/0.3 mm
- Single unit or master card size 7 " x 5 " (usable area)
- Surface finish: bare Cu, Ni, Ni/Au, Ag (partial Ag on request)

Key properties

- Dimples (stress relief)
- DMC (Data Matrix Code)

Process features:

- Grinding surface treatment
- Laser technology
- US Scan
- AOI (Automatic Optical Inspection)

Key features

Higher reliability version and economic version available

Main properties substrate (DCB)

	Rating	Unit
Thermal conductivity @ 20 °C	≥	22W/m.K
Bending strength	600 - 650	MPa
Die electric strength	≥	20kV/mm

Condura[®].Extra Design Rules DPIS⁽¹⁾

Material properties raw Al₂O₃⁽³⁾

	Rating	Unit
Density	> 3.95	g/cm ³
Electrical resistivity	$\geq 10^{14}$	Ohm∙cm

Copper free area

Thickness Cu [mm]	Min. side area [mm]
0.20	0.20
0.30	0.25

Structuring

Thickness Cu [mm]	Min. space [mm]	Min. line [mm]
0.20	0.40	0.40
0.30	0.50	0.50

Etching tolerance

Tolerance length & width [mm]	Thickness Cu [mm]
$T_{typ.} = \pm 0.15$	d = 0.2
$T_{typ.} = \pm 0.20$	d ≤ 0.3
$T_{typ.} = \pm 0.20$	d ≤ 0.4

Condura[®].Extra Design Rules DPIS⁽¹⁾

DI	m	e	1	31	0	ns	

rim

General dimensions	Rating (mm)
Master card	138 x 190.5
Max. usable area	127 x 178
Minimum dimension for	10 x 10
ceramic thickness \leq 0.32 mm	(smaller on request)

0.30 0.40

Surface plating

our de plating				
Plating Method	Thickness (um)			
	Thickness (uni)			
Electroless Ni	3 - 7 (9% ± 2 % P)			
	Ni 3 - 7 (9 % ± 2 % P)			
Electroless NiAu	Au Class 1: 0.01 - 0.05			
	Au Class 2: 0.03 - 0.13			
Ag	0.2 - 0.3			

(1) Development Product Information Sheet, preliminary values

Condura[®].Extra **Design Rules DPIS**⁽¹⁾

■ Condura® +

Americas

Phone +1 610 825 6050

electronics.americas@heraeus.com

Metal & hole	properties				
Roughness		Minimum hole diameter		HET Academ R&D Applica	
Rmax	x = 50 μm	d _{hole} = 1 mm		Desides offeri	
$Ra \le 3.5 \ \mu m$	$Ra \le 1 \ \mu m$	Electrical conductivity raw copper		Materials, Bor	
Rz ≤ 24 µm	Rz ≤ 16 µm	$\mu m \qquad $		Metal Ceramic Heraeu <u>s Elec</u> t	
		Thickness Cu	Copper peeling Strength	matching mate R&D oriented	
Different roug	ghness by request	0.30mm	> 4 N/mm		
The	ermal shock test cycles	Customi	ized surface for assembly	process	
{	55 °C up to +150 °C	Optimiz	ation of surface and asser	mbly process	
Info		 parameters available or in development cooper Sintering Solder wetting Heavy wire bondability 		pement cooperation fo	
	ormation upon request	Sinte Sold Heav	ler wetting vy wire bondability		

√

√

Condura[®].classic DCB-Al₂O₃ (direct copper bonded Al₂O₃)

Testing and Qualification, Material Analysis)

China

Phone +86 53 5815 9601

electronics.china@heraeus.com

✓ Pre-applied sinter / solder

Engineering Services (Simulation, Prototype Design & Assembly,

tion Center

ng Assembly nding Wires and : Substrates, ronics provides erial solutions and

12.2021, Layout: CF

The descriptions and engineering data shown here have been compiled by Heraeus using commonly-accepted procedures, in conjunction with modern testing equipment, and have been compiled as according to the latest factual knowledge in our possession. The information was up-to date on the date this document was printed (latest versions can always be supplied upon request). Although the data is considered accurate, we cannot guarantee accuracy, the results obtained from its use, or any patent infringement resulting from its use (unless this is contractually and explicitly agreed in writing, in advance). The data is supplied on the condition that the user shall conduct tests to determine materials suitability for a particular application

for example:

To be your competent one-stop materials solutions partner!

Asia Pacific

Phone +65 6571 7649

electronics.apac@heraeus.com

Europe, Middle East and Africa

electronics.emea@heraeus.com

Phone +49 6181 35 4370