Reliability · Bondability · Ultra Fine Pitch
State-of-the-Art 2N Gold Wire with Ultimate Reliability and Bondability

Features

- Ultimate high reliability of 1st bond
- Hassle-free bondability in both 1st and 2nd bond, suitable for both laminate and leadframe devices
- Significantly improved 2nd bond stitch pull value
- Robust 2nd bond at lower parameters
- Improved concentricity of FAB for ultrafine wire bonding
- Soft free air ball, applicable for low-k and sensitive die
- Higher MTBA as compared to other 2N gold wires

Ultimate High Reliability Performance

Isothermal Aging @ 200°C in Air [hrs]

Ball Strength [gm]

- RelMax of 15 µm diameter passed HTS. 5000 hours at 200°C – significantly surpass the most stringent criteria in the market, including automotive industry.

Stable intermetallic growth at elevated storage temperature

Soft Free Air Ball

FAB Hardness [HV0.005/5]

Improved Bonded Ball Concentricity

Ultra-fine pitch ball bond concentricity

Reference Wire

Recommended Technical Data of RelMax

<table>
<thead>
<tr>
<th>Diameter (µm)</th>
<th>Microns</th>
<th>Mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.8</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>0.9</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>1.0</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>1.2</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Elongation (%) 2 – 6 2 – 7 3 – 7 3 – 7 3 – 7 3 – 8 3 – 8 3 – 8

Breaking Load (g) 3 – 7 4 – 9 5 – 11 8 – 14 10 – 16 13 – 19 15 – 20 18 – 25

For other diameters, please contact Heraeus Bonding Wires sales representative.
Characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>Diameter at 25 µm</th>
<th>Diameter at 15 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic Modulus</td>
<td>~90 GPa</td>
<td>~90 GPa</td>
</tr>
<tr>
<td>Heat Affected Zone (HAZ) at BSR 1.8</td>
<td>35 – 110 µm</td>
<td>35 – 110 µm</td>
</tr>
<tr>
<td>FAB Hardness at BSR 1.8</td>
<td>57 – 67 HV (0.01 N/s)</td>
<td>57 – 67 HV (0.01 N/s)</td>
</tr>
<tr>
<td>Fusing Current, dia 10 mm length (in air)</td>
<td>0.37 A</td>
<td>0.23 A</td>
</tr>
<tr>
<td>Non-Gold Elements</td>
<td>< 1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>Density</td>
<td>19.3 g/cm³</td>
<td>19.3 g/cm³</td>
</tr>
<tr>
<td>Heat Conductivity</td>
<td>2.3 W/cm.K</td>
<td>2.3 W/cm.K</td>
</tr>
<tr>
<td>Electrical Resistivity</td>
<td>3.3 µΩ-cm</td>
<td>3.3 µΩ-cm</td>
</tr>
<tr>
<td>Coeff. of Linear Expansion (20 – 100 °C)</td>
<td>14.2 ppm/K</td>
<td>14.2 ppm/K</td>
</tr>
</tbody>
</table>

Larger 2nd Bond Window

with Improved Stitch Pull Value

Stitch pull reference 2N wire

Stitch pull reference RelMax

MTBA Improvement over Ref. 2N Wire

Maintaining Stitch Pull at Lower Bonding Parameter Setting

Parameter reduction (USG, Force)

Device Type A

- Device: BGA
- Wire bonder: ASM Eagle 60 AP
- Capillary: K&S 2CA5768L
- Gold wire: 20 µm

Device Type B

- Device: BGA
- Wire bonder: K&S Maxum Plus
- Capillary: K&S 488CF-3454-R33
- Gold wire: 23 µm
Gold Wire Segmentation by Properties

- Superior Reliability
- Widest Bonding
- Highest Looping Performance

- Electrical Performance

Widest Bonding Window

High Loop / Low Loop

Sensitve Pad Structure

The data given here is valid. We reserve the right to make technical alterations.

Heraeus Electronics
Heraeus Deutschland GmbH & Co. KG
Heraeusstraße 12-14
63450 Hanau, Germany
www.heraeus-electronics.com

Americas
Phone +1 610 825 6050
electronics.americas@heraeus.com

Asia Pacific
Phone +65 6571 7677
electronics.apac@heraeus.com

China
Phone +86 21 3357 5457
electronics.china@heraeus.com

Europe, Middle East and Africa
Phone +49 6181 35 3069
+49 6181 35 3627
electronics.emea@heraeus.com

The descriptions and engineering data shown here have been compiled by Heraeus using commonly-accepted procedures, in conjunction with modern testing equipment, and have been compiled as according to the latest factual knowledge in our possession. The information was up-to-date on the date this document was printed (latest versions can always be supplied upon request). Although the data is considered accurate, we cannot guarantee accuracy, the results obtained from its use, or any patent infringement resulting from its use (unless this is contractually and explicitly agreed in writing, in advance). The data is supplied on the condition that the user shall conduct tests to determine materials suitability for particular application.