NEXT-GENERATION COATING APPLICATIONS BY AEROSOL DEPOSITION

Heraeus High Performance Coatings, ITSC2023, Quebec – 23.05.2023

OUTLINE

- 1) Aerosol Deposition by Heraeus High Performance Coatings
- 2) Next Generation Coatings for semicon and medical applications: YAG & Si3N4
- 3) Significant Service Life Extension for High-Temperature Nickel Alloys

OUTLINE

1) Aerosol Deposition by Heraeus High Performance Coatings

- 2) Next Generation Coatings for semicon and medical applications: YAG & Si3N4
- 3) Significant Service Life Extension for High-Temperature Nickel Alloys

THE HERAEUS BUSINESSES – BROADLY DIVERSIFIED

HPC'S CORE TECHNOLOGY: AEROSOL DEPOSITION

deposition chamber

particles accelerated to several 100 m/s sprayed on substrate fracture due to high kinetic energy and form a compact layer

high process stability and reproducibility due to generic nozzle design

aerosol generator

Particles of coating material (sub-µm to several µm)

UNPRECEDENTED MATERIAL FREEDOM

Aerosol Deposition – a unique coating method

Room Temperature Coating

- Ceramics
- Metals
- Unprecedented material combinations and mixtures

Coating Quality

- Very good adhesion
- Minimum surface roughness increase
- Very high compactness
- 1 100 µm

Cost Effective

- High deposition rates
- Moderate equipment costs
- Low energy consumption

Heraeus High Performance Coatings - Dr. Ilka-Verena Luck - International Thermal Spray Conference and Exposition 2023

COMPARISON OF DIFFERENT COATING TECHNOLOGIES

	Aerosol Deposition	CVD/PVD	Thermal Spray	Cold Spray
Material Choice	Metals, Ceramics, Composites	Metals, Ceramics, Composites	Metals, Ceramics, Composites	Metals, Cermets
Deposition Rate	High	Low	High	Very High
Temperature	Low (RT)	Medium/High	High	Medium (~ 300 °C)
Vacuum	Low Vacuum	UHV	Atmospheric	Atmospheric
Scale-Up	Medium Parts	Difficult	Large Parts	Large Parts
Thickness	1 – 100 µm	~ 1 µm	> 50 µm	> 50 µm
Adhesion	Very Good	Poor	Good	Good
Conformity	Good	Very Good	Poor	Poor
Costs	Low	High	Medium/Low	Medium

TESTED COATING AND SUBSTRATE MATERIALS

HPC has an unprecedented portfolio of coating materials and material mixtures for all types of substrates

11 ceramic and 4 metal coatings are available off the shelf New coatings and substrates are - mixtures of materials possible continuously tested **Ceramic Coatings** Metal Coatings **Coating Mixtures** Selection of tested substrates α-Aluminum Oxide Silver (Ag) Aluminum Oxide / Pore-forming agent Metals e.g., steel, aluminum, copper y-Aluminum Oxide Copper (Cu) AIN / TiN Ceramics e.g., Al₂O₃, YSZ, AIN, Si₃N₄ Yttrium Oxide Tin (Sn) Glass Tungsten (W) ZTA (Zirconia toughened Alumina) Silicon Aluminum Nitride Polymers Structured substrates e.g., gold or platinum Spinel (Magnesium Aluminate) electrodes on ceramics MSZ (Magnesia stabilized Zirconia)

Heraeus High Performance Coatings

Silicon Nitride

UV luminescent compounds

YSZ (Yttria-stabilized Zirconia)

YAG (Yttrium Aluminum Garnet)

8

OUR SERVICES

We accompany customers from initial feasibility study to introducing this new process into series production.

Evaluation

- Material screening
- Feasibility studies
- Process customization

Prototype & (Small) Series

- Prototype manufacturing
- (Small) series production

Equipment Supply

- Custom made production equipment
- Standardized R&D equipment

Material Supply

- Reliable material supply
- Guaranteed result if material & equipment is from Heraeus

APPLICATIONS

E-Mobility

e.g. electrically insulating coatings (laminated permanent magnets, ball bearings)

Sensors

e.g. protective coatings for high-temperature sensors

Industrial Equipment

e.g. anti-corrosion coatings for high temperature alloys (furnaces), separator layers in high temperature processes

Medical Area

e.g. development of antiseptic coatings

Electronics

e.g. electrically insulating coatings, functional coatings (MLCC, storage devices, piezoelectric sensors)

Semiconductor Production

e.g. etch resistant coatings for plasma etch chambers

OUTLINE

1) Aerosol Deposition by Heraeus High Performance Coatings

- 2) Next Generation Coatings for semicon and medical applications: YAG & Si₃N₄
- 3) Significant Service Life Extension for High-Temperature Nickel Alloys

ETCH RESISTANT COATINGS FOR PLASMA ETCH CHAMBER PARTS

Y₂O₃ and YAG coatings by Aerosol Deposition

Next generation Plasma resistant coatings: AD-YAG

- Progress in EUV lithography allows further miniaturization, creating challenges for established coating materials and coating methods in the plasma etch chamber
- < 17 nm particles become big issue for current nodes → AD-Y₂O₃ not good enough anymore → Next generation AD-YAG coatings
- YAG can be done very well by AD not so easy by other deposition methods

SI3N4 COATINGS BY AEROSOL DEPOSITION

- Thermal Spraying of Si₃N₄ highly challenging: dissociation above 1800°C, oxidization
- Limited success with inflight nitridation or reactive spray processing
- State of the art Si_3N_4 coatings by CVD \rightarrow costly process

Si₃N₄ coatings applied by Aerosol Deposition

- Coating of Si₃N₄ directly on the part at room temperature
- Stoichiometric Si₃N₄ films with no impurities or unwanted embrittling phases
- Large variety of processable substrates (metals, ceramics, polymers)
- Very good mechanical properties of AD-Si₃N₄ films e.g.:

 $R_a = 0.3 \ \mu\text{m}, R_z = 1.5 \ \mu\text{m} \text{ (unetched)}$ Thermo-shock: > 1000 cycles: -65 °C \leftrightarrow 150 °C Adhesion > 30 MPa, no change in appearance

Titanium plates uncoated (top) and $AD-Si_3N_4$ coated (bottom)

EXEMPLARY SI3N4 COATINGS

Si₃N₄ as antibacterial and antiviral coating

- β-Si₃N₄ coatings exhibit anti-viral and antibacterial characteristics
- Coating of AD-Si₃N₄ on complex geometries replacing costly CVD coating processes
- Crater like surface structure in as-deposited state
 → large surface with high contact angle (hydrophobic)

SEM top views of AD-Si₃N₄ film

Examples of AD-Si $_3N_4$ coated products: dental implant (top) and bone screw (bottom)

Heraeus High Performance Coatings - Dr. Ilka-Verena Luck - International Thermal Spray Conference and Exposition 2023

OUTLINE

- 1) Aerosol Deposition by Heraeus High Performance Coatings
- Next Generation Coatings for semicon and medical applications: YAG & Si3N4
- 3) Significant Service Life Extension for High-Temperature Nickel Alloys

PROTECTION FOR HT – ALLOYS: MOTIVATION

Protection layer on MCrAIY

- MCrAIY alloys are used in high temperature (*T* > 500 °C) environment with M = Fe, Ni, Co
- These alloys form Al₂O₃ based coatings upon HT exposure (alumina formers)
 → diffusion barrier for oxygen and slowing down corrosion

But

- Al concentration in the alloy governs the formation of the protective alumina coating: if the Al content is too low

 no film formation or upkeep of film
- Only the final α -Al₂O₃ acts as protection layer. Metastable γ -Al₂O₃ or θ -Al₂O₃ form during heat-up and result in cracks and voids caused by the phase transitions.

PROTECTION FOR HT – ALLOYS: SOLUTION

Coating process

- Alloy 602 (marginal alumina former NiCr₂₅FeAlY) was coated with 5 μ m α -Al₂O₃ by AD
- Uncoated Alloy 602 and AD-Al₂O₃ Alloy 602 were exposed to ambient air at 1000 °C for 1000 h
- Conventional Alloy 602 shows formation of Cr, Ni-oxides on the alloy surface and Al₂O₃ precipitates in the inner oxidation zone
- AD-Al₂O₃ coated Alloy 602 shows no microstructural change, voids or precipitates after heat treatment No oxidation occurred → very good protective character of AD-Al₂O₃ layer

 α -Al₂O₂ coated sample

PROTECTION FOR HT-ALLOYS: EXPLANATION

AD α -Al₂O₃ enhances lifetime of components

Parts are protected from the start of operation
 Al content needed to form or sustain the alumina film formed by component is significantly reduced

→ Thin components with limited AI reservoirs can withstand high temperatures with extended operation times

50

THANK YOU FOR YOUR **ATTENTION**

WWW.HERAEUS-HIGH-PERFORMANCE-COATINGS.COM

19

RITTAL